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Abstract
Consideration is given to the convergence properties of sums of identical,
independently distributed random variables drawn from a class of discrete
distributions with power-law tails, which are relevant to scale-free networks.
Different limiting distributions, and rates of convergence to these limits, are
identified and depend on the index of the tail. For indices �2, the topology
evolves to a random Poisson network, but the rate of convergence can be
extraordinarily slow and unlikely to be yet evident for the current size of the
WWW for example. It is shown that treating discrete scale-free behaviour with
continuum or mean-field approximations can lead to incorrect results.

PACS numbers: 02.50.Fz, 05.45.Df, 05.56.+b, 89.75.Fb

Scale-free random networks are an important genre of complex behaviour: by which is meant
correlated, nonlinear, collective phenomena, in large multi-component systems. A measure of
the topological connectivity of a network is the ‘order distribution’, e.g. [1]. This is a discrete
probability distribution for the number of vertices or links into, or out of, nodes comprising the
system. Diverse naturally occurring, man-made and social networks have order distributions
with power-law asymptotes, giving rise to the notion of discrete, in contrast to continuous,
random self-similar behaviour. This letter addresses this increasingly important aspect of
complexity by first identifying and discussing the properties of the discrete analogue of the
Lévy-stable densities. However, the discrete-stable class does not include the majority of
naturally occurring networks. This prompts analysing a class of distributions that can model
such networks, and investigating how their properties differ from the discrete-stable class.
Properties of the discrete distributions behave differently from their continuous analogues
and, as a consequence, formulations of network behaviour founded on a continuum or ‘mean
field’ are inappropriate in specified regimes.

Aspects of complexity are frequently described by fluctuations with self-similar
characteristics, for which the class of Lévy-stable densities [2] can provide a model. The
epithet ‘stable’ derives from the property that sums of independent, identically distributed
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(iid) random variables are distributed like their summands to within a scaling factor. The
best-known example is the sum of N iid Gaussian random variables of zero mean and variance
σ 2, which also is exactly a Gaussian variable with variance Nσ 2. But the Gaussian is also
an attractor for sums of random variables that have finite variance—this being the central
limit theorem of classical statistics [3]. The Lévy-stable class is broader however, with other
members sharing the property that their probability densities have power-law tails with index
falling within the range −3 to −1, so that the variance does not exist. These distributions are
the attractor for fluctuations with infinite variance [4].

The discrete-stable distributions are defined through their generating function [5–7]:

q(s) =
∞∑

n=0

(1 − s)nP (n) = exp(−Asν)

where P(n) is the probability distribution for occurrences of the random integer variable
n � 0, A is a positive, real constant which acts as scale factor and 0 < ν � 1. The probability
distributions are derived from the generating function by differentiation:

P(n) = (−1)n

n!

dnq(s)

dsn

∣∣∣∣
s=1

and if n � 1, P(n) ∼ 1/n1+ν provided that 0 < ν < 1, giving power-law asymptote with
index in the range −2 < −(1 + ν) < −1; hence the mean of these distributions does not
exist. The stability property results from the fact that the generating function for a sum of
N iid random variables is q(s)N , which for the stable law gives the same distribution with
scaling factor A′ → N1/νA. The case ν = 1 corresponds to the Poisson distribution, where
the scaling factor can then be interpreted as the mean. The Poisson distribution therefore has
the same significance for discrete-stable distributions as does the Gaussian for the continuous
Lévy-stable densities.

There are numerous instances where the discrete distribution has power-law asymptote
but with index falling in the range −3 to −2 [1], which is outside the discrete-stable regime of
validity. Such distributions are quantitatively different from the discrete-stable distributions
since the mean exists, but the variance does not. It is to be expected that sums of iid random
variables with power-law index outside the regime for the discrete-stable regime should have
the Poisson distribution as attractor. The principal concern hereon is to verify this expectation,
quantify the rate of convergence to the limit and discuss the implications.

A model for a probability distribution which has power-law asymptote, but is not of the
discrete-stable class, is

P(n;m + ν, a) = 1

ζ(m + ν, a)(n + a)m+ν
(1)

where 0 < ν < 1, m is a positive integer, a is real and positive and the generalized Riemann
zeta function [8],

ζ(m + ν, a) =
∞∑

n=0

1

(n + a)m+ν

provides the normalization. Selecting a = 1 defines the Riemann zeta function ζ(m + ν).
The model (1), whilst not the most general form for a scale-free distribution, nevertheless
encapsulates the essential properties required for analysing limiting distributions. The
generating function equivalent to the distributions (1) is

q(s;m + ν, a) =
∞∑

n=0

P(n;m + ν, a)(1 − s)n
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which can be written in terms of the Lerch transcendent [9]

�(1 − s,m + ν, a) = ζ(m + ν, a)q(s;m + ν, a) =
∞∑

n=0

(1 − s)n

(n + a)m+ν
.

The properties of this function for small values of s determine the large n asymptotics of
distributions that describe sums of iid random variables. There are surprisingly few instances
documenting results for the form of � in this regime. Expressions obtained here are non-trivial
and display subtle behaviour (insofar as the singularities of the function are concerned) as the
index m + ν passes through integer values. It is the nature of these singularities that ultimately
influence the asymptotic behaviour of the distribution and corresponding convergence to the
limiting distribution.

Two key properties of the Lerch transcendent that can be utilized to reveal its small s
asymptotics are the observation that

Dm((1 − s)a�(1 − s,m + ν, a)) = (−1)m(1 − s)a�(1 − s, ν, a) (2)

where the differential operator D ≡ (1 − s) d/ds and m is a positive integer, coupled with the
limit [9]

lim
s→0

s1−ν�(1 − s, ν, a) = �(1 − ν) (3)

valid when 0 < ν < 1.
The first instance to consider is the convergence to the discrete-stable attractor of a

distribution described by equation (1), with m = 1, giving index 1 + ν where 0 < ν < 1.
Consider the generating function

q(s; 1 + ν, a) = 1

ζ(1 + ν, a)

∞∑
n=0

(1 − s)n

(a + n)1+ν
= �(1 − s, 1 + ν, a)

ζ(1 + ν, a)

whose associated distribution has a power-law tail with index in the regime of the discrete-
stable class. Evaluating equation (2) for m = 1 gives,

d

ds
((1 − s)a�(1 − s, 1 + ν, a)) = −(1 − s)a−1�(1 − s, ν, a), (4)

whereupon taking the limit s → 0, applying equation (3) to the right-hand side of (4) and then
integrating obtains

(1 − s)a�(1 − s, 1 + ν, a) ≈ −�(1 − ν)

ν
sν

2F1(ν, 1 − a, 1 + ν; s) + ζ(1 + ν, a).

Here 2F1 is the hypergeometric function [8], and ζ(1 + ν, a) the integration constant. Hence,
an expansion for the generating function that is accurate to order s is

q(s, 1 + ν, a) ≡ �(1 − s, 1 + ν, a)

ζ(1 + ν, a)
≈ 1 − �(1 − ν)

νζ(1 + ν, a)
sν + as + O(s1+ν). (5)

The generating function (5) is not differentiable at s = 0, indicating the mean of the distribution
does not exist, as can be verified directly from equation (1). This generating function can also
be used to investigate the convergence for sums of iid random variables. Consider the sum
of N independent random variables having distribution given by equation (1). The generating
function for the resultant is

Q1+ν(s) ≡ q(s, 1 + ν, a)N

and the asymptotic properties of this are obtained from the behaviour of the generating function
near s = 0 in the limit N → ∞. Upon taking the logarithm of equation (5) and rescaling
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Figure 1. The term g(N, ν, 1) appearing in the expansion of the generating function given by
equation (6), illustrating the convergence to the limiting discrete-stable distribution for sums of
N iid random variables with index 1.25 (ν = 0.25) (full), 1.5 (ν = 0.5) (dashed), 1.75 (ν = 0.75)
(long-dashed), 1.95 (ν = 0.95) (short-dashed). The parameter a = 1.

s → (νζ(1 + ν, a)/N�(1 − ν))1/νs ′:

ln(Q1+ν(s
′)) ≈ N ln

[
1 − �(1 − ν)

νζ(1 + ν, a)
sν + as . . .

]

≈ −s ′ν + a

(
νζ(1 + ν, a)

�(1 − ν)

)1/ν

N1−1/νs ′ + · · ·

= −s ′ν + g(N, ν, a)s ′ + O(s1+ν) (6)

which to leading order yields the generating function for the discrete-stable law, with a
correction that vanishes like a fractional inverse power of N. Figure 1 depicts g(N, ν, a) as a
function of N for selected of values of ν, illustrating that the convergence towards the stable
attractor slows substantially as ν → 1, i.e. as the index of the distribution approaches 2.

The next case to consider is probability distributions (1) with index 2+ν, i.e. m = 2, again
where 0 < ν < 1. Such distributions have finite mean but no variance. The marginal cases
ν = 0 and ν = 1 will require separate treatment due to different nature of the singularities of
the function at s = 0.

Evaluating equation (3) for m = 2 and proceeding as before, the following expansion for
the generating function is obtained that is accurate to order s1+ν :

q(s, 2 + ν, a) ≡ �(1 − s, 2 + ν, a)

ζ(2 + ν, a)

≈ 1 −
(

ζ(1 + ν, a)

ζ(2 + ν, a)
− a

)
s +

πcosec(πν)

�(2 + ν)ζ(2 + ν, a)
s1+ν + O(s2). (7)

Differentiating (7) with respect to s and setting s = 0 gives the mean:

〈n〉 = ζ(1 + ν, a)

ζ(2 + ν, a)
− a
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Figure 2. The term h(N, ν, 1) appearing in the expansion of the generating function given
by equation (8), illustrating the convergence to the limiting Poisson distribution for sums of
N iid random variables with index 2.1 (ν = 0.1) (full), 2.25 (ν = 0.25) (long-dashed), 2.5
(ν = 0.5) (dashed), 2.75 (ν = 0.75) (short-dashed). Again, the convergence is slowest as the index
approaches 2. The parameter a = 1.

and again, this can be verified directly from equation (1). The second derivative of (7) at
s = 0 formally obtains the second factorial moment 〈n(n − 1)〉, but this does not exist since
0 < ν < 1.

The limiting distribution for the sum of N iid random variables can be found as before
with the aid of equation (7), but here the relevant scaling factor is now s → s ′/〈n〉N which
obtains

ln(Q2+ν(s)) ≈ −s ′
[

1 − πcosec(πν)

�(2 + ν)ζ(2 + ν)〈n〉1+νNν
s ′ν + · · ·

]
.

≈ −s ′(1 − h(N, ν, a)s ′ν) + O(s2) (8)

This shows that the limiting distribution is the Poisson with a correction that vanishes as an
inverse fractional power of N: note however that the value of the exponent differs from the
previous case. Figure 2 shows h(N, ν, a) for different values of ν, and it can be seen that as
ν → 0, i.e. as the index of the distribution approaches 2, the convergence to the Poisson slows
substantially. Clearly, 2 is a marginal value for the index of the distribution.

This different behaviour occurs because of the nature of the singularity of the Lerch
transcendent at s = 0 which changes for integer values of ν. This is revealed with greatest
economy and transparency on setting a = 1 in the marginal case m = 2, ν = 0, for then:

d

ds
((1 − s)�(1 − s, 2, 1)) = ln s

1 − s

and integrating this obtains the exact result:

�(1 − s, 2, 1) = π2

6

1

1 − s
+

1

1 − s

∫ s

0

ln s ′

1 − s ′ ds ′
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Figure 3. Illustrating the very slow convergence to the Poisson distribution for sums of N iid
random variables with index 2. Note the abscissa is a logarithmic scale for the logarithm of N.

where the numerical value for ζ(2), the integration constant, has been substituted. Expanding
the denominator of the integrand enables the integral to be evaluated as an infinite series of
elementary functions, namely

∫ s

0

ln s ′

1 − s ′ ds ′ =
∞∑

n=0

s1+n

1 + n

(
ln s − 1

1 + n

)
.

Thus, the expansion of the corresponding generating function about s = 0 is readily determined
to be

q(s; 2, 1) ≡ �(1 − s, 2, 1)

ζ(2)

≈ 1 +
6

π2
s ln s +

(
1 − 6

π2

)
s +

9

π2
s2 ln s +

(
1 − 15

2π2

)
s2 + O(s3 ln s). (9)

Note that this function is not differentiable at s = 0 by virtue of the logarithmic singularity,
implying that the mean of this distribution does not exist.

The convergence properties are found with the aid of equation (9) on scaling according
to s → π2s ′/6N ln N which obtains

ln(Q2(s
′)) ≈ N ln

[
1 +

s ′

N ln N
ln

(
π2

6

s ′

N ln N

)
+

(
π2

6
− 1

)
s ′

N ln N
+ · · ·

]

≈ −s ′
[

1 − 1

ln N

(
π2

6
− 1 + ln

(
π2

6

)
− ln(ln N)

)]
+

s ′ ln s ′

ln N
+ · · ·

= −s ′(1 − f (N)) +
s ′ ln s ′

ln N
+ O((s ′ ln s ′)2). (10)

This shows that the distribution of the resultant is Poisson, but the convergence is
extraordinarily slow. Figure 3 shows 1 − f (N) over three decades of ln(N). This function
passes through unity at N ∼ 23, has a maximum at N ∼ 5023 before converging to unity. The
function is within 5% of its limiting value of unity only for N > 3 × 1025. The second term
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Table 1. Summarizing the convergence properties of discrete power-law distributions: 0 < ν < 1
throughout.

Index Limit distribution Convergence rate

1 + ν Discrete stable N−(1/ν−1)

of index 1 + ν

2 Poisson ln(ln(N))/ ln(N)

2 + ν Poisson N−ν

�3 Poisson N−1

containing the logarithmic singularity indicates that the mean of the resultant diverges for any
finite value of N.

The other marginal case ν = 1 can be derived from equation (9) on utilizing equation (2),

d

ds
((1 − s)�(1 − s, 3, 1)) = −�(1 − s, 2, 1) = −ζ(2)q(s; 2, 1).

Performing the integration and inserting the value of the integration constant obtains the
following expansion for the generating function about s = 0:

q(s; 3, 1) = �(1 − s, 3, 1)

ζ(3)
≈ 1 −

(
ζ(2)

ζ(3)
− 1

)
s − 1

2ζ(3)
s2 ln s + O(s2). (11)

The first derivative of this function does exist at s = 0, and hence so too does the mean of the
distribution. However, the function has a higher order logarithmic singularity which implies
that it is not twice differentiable at s = 0. In general, the expansion of the generating function
with integer value m for the index will have a term ∼sm−1 ln s implying that the (m − 1)th
order derivative does not exist at s = 0, and so the (m − 1)th, and higher order factorial
moments of the corresponding distribution are undefined.

The convergence properties in this regime of the index can be found using equation (11)
and scaling according to s → s ′/〈n〉N :

ln(Q3(s)) ≈ −s ′ +
1

2ζ(3)〈n〉2N
s ′2 ln s ′

+
1

〈n〉2

((
3

2ζ(3)
+ 2 − 3ζ(2)

ζ(3)

)
+

(ln N + ln〈n〉)
ζ(3)

)
s ′2

2N
+ · · ·

≈ −s ′
(

1 − 217.029

N
s ′ ln s ′

)
+ O(s ′2) (12)

which has the customary N−1 convergence to the Poisson attractor, as indeed will all
distributions with index �3. A summary of the limit distributions and rates of convergence to
these limits in the different index regimes is given in table 1.

The common emergent feature of these results is the slowing of convergence for sums of
random variables to the Poisson attractor as their distributions tend towards 1/n2: this being the
margin between those stable distributions with infinite mean and the Poisson distribution. This
behaviour is especially extreme when considering ensembles at the margin, and is particularly
relevant to scale-free networks, examples of which have indices that appear to cluster
around 2. Whilst the results presented here conclude that networks with index �2 inevitably
evolve towards a random Poisson network, the size of that system should not be confused
with the quantity N appearing in equations (6), (8), (10), (12): rather N refers to the number
of independent ensembles that must be assembled. If any of these ensembles are correlated,
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then the sum required for convergence to the limit will be still larger. Estimates of the size
of the Web in August 2003—evaluated in terms of the number of catalogued documents—
is ∼3 × 109 [10]. The index of the order distribution depends on whether the number of
incoming links are counted, in which case it ranges between 1.94 and 2.1, or if the number of
outgoing links are considered, for which the range is 2.38—2.72 [1, 12, 13]. The index for
incoming links straddles the marginal value 2 and hence, given the current size of the WWW,
any evolution in the network topology will not yet be evident. Although the range of values
for the index for outgoing links is larger, the convergence is still sufficiently slow as to make
any evolution in the index undetectable at present. Nevertheless, it is the topology of the
‘outgoing’ network that will be first discerned as the overall size of the web increases.

It is important to stress fundamental differences between scale-free discrete and continuous
random variables. The discrete-stable distributions are distinct from the one-sided Lévy-stable
densities, the latter having non-zero mode whilst the former have zero mode, quite apart from
their differing regimes of power-law behaviour. If, for example, sums of iid random variables
with P(n) ∼ 1/n2+ν , where 0 < ν < 1, were treated as sums of continuous iid random
variable x with p(x) ∼ 1/x2+ν , their convergence properties would be totally different. The
continuous random variable would evolve towards the Lévy-stable density of index 2 + ν,
for which the variance does not exist, whereas the discrete system would evolve towards a
Poisson density for which all moments exist. Hence, treating discrete scale-free networks with
continuum approximations can lead to erroneous conclusions with regard to the evolution of
the network.

The existence of an outer scale to the distribution modifies these results—the limit
being Poisson irrespective of the value of the index since, perforce, the mean exists for
any distribution with an outer scale. However this addition is incremental on the current work,
and introduces technicalities that obscure the straightforward treatment and conclusions given
here, and so will be considered elsewhere.
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